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’ Abstract: Tadsc<investigation 15~eeaeerme‘ A

steady~-state reaction of a propeller to
velocity perturbations induced by deflected
. control surfaces located upstream of the

propeller.\ The study was pursued along

"both _ etical and experimental lines,

CTheoretically; actuator disk’ theory is

used, first, tou represent the control sur-
Zaces and introduce a distortion into the
flow and, secondly, <o represent the action
of the propeller when exposed to the distorted
fiow. The problem is reduced to a boundary
value problem by linearizirng the equations of
notion and the continuity equation and then
solved by proper choice of boundary and
matching conditions at the actuator discs,

The experimental results show that the
maximum reaq’ive force of the propeller is
about 34 per~cent of the control surface force.
This maximum occurs for a 10-bladed propeller
with lesser percentages occurring for propellers
of 2 and 5§ blades. Practically no variation
with advance ratio and spacing distance was
measured,

The conclusion is made that, although
further work is needed- cularly with re-
gard to computational accuracy, the theoretical
method is—a—useable-one-which’can easily de

extended to the case of a ducted rotating device._
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SUMMARY

Statement of the Problem

The purpose of this investigation is, in general,
to determine the steady-state reaction of a propeller
to velocity perturbations induced by deflected control
surfaces located upstream of the propeller. A propeller
operating in such a distorted flow will tend to
straighten the flow, thus producing forces that are
opposite to those induced by the control surfaces., The
effectiveness of the control surfaces is therefore

reduced.

Ogigin of the Problem

Theoretically, the investigation belongs to a
class of problems characterized as flow distortion
problems. Most of the steady~state investigations of
this class have their origin in the axial flow compressor
field. Here the principal interest is in predicting
the flow leaving a blade row.

Two distinct types ofxaisthtiony radia15

and

circunferential6 have been treated. A combination of
both these types was investigated with reference to a
plane cascade of airfoils7. There was consequently a
need for a three-dimensional analysis of radially and

circumferentially distorted flows in cylindrical
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coordinates. This need, combined with the practical
problem of propeller reaction to control surface

deflections, forms the basis for this investigation.

Procedure of the Investigution

The investigation was pursued along both theoretical
and experimental lines. Theoretically, actuator disc
theory is used, first, to represent the control surfaces
and introduce a distortion into the flow and, secondly,
to represent the action of a propeller when exposed to
a distorted flow. The distorted flow investigated is
that produced by two control surfaces, vertically
oriented 180 degrees apart, deflecting the flow in the
same sideward direction.

The app.oach that in general is followed is to
linearize the equations of motion and the continuity
equation and combine them to produce a single differential
equation for the pressure perturbation. By assuming a
series solution for this equation, expressions for the
velocity perturbations are derived which can be
evaluated by proper choice of boundary and matching
conditions at the actuator discs. The perturbations
that are still present in the flow downstream of the
propeller disc are a measure of the reaction of the

propeller to the distorted inflow. The prediction of



the velocity perturbations just upstream and just down-
stream of the propeller disc permits the estimation of
the force reaction to the distorted inflow.

The experimental part of the investigation was
divided into two phases. The first phase was devoted
purely to the measurement of the distortion induced by
the deflected control surfaces. This was accomplished
with a three-dimensional, pitot type ﬁrobe. The second
phase was concerned with the measurement of the
propeller reaction to the flow distortions. These
measurements included velocity surveys downstream of
the propeller and force measurements of the control
surfaces and propeller.

In both the theoretical and experimental phases
account was taken of the propeller reaction to variatiomns
in propeller advance ratio, spacing distance between
control surfaces and propeller, and numbers of

propeller blades.

Results

The distribution of velocity perturbations measured
immediately downstream of the propeller shows that the
general shape of the original disturbance is maintained.
The magnitude is less and as such is a measure of the

reaction of the propeller.
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The force measurements show that the maximum
reactive side force of the propeller is about 34 per cent
of the control surface force. This maximum occurs for
2 l0-bladed propeller. Lesser percentages occur for
propellers of 2 and 5 blades. Practically no variation
with advance ratio or spacing distance was measured.

The theoretical representation of the velocity
perturbations by series was generally good. One
exception occurred with the radial component of velocity
perturbation downstream of the control surface. A
vortex trailing from each control surface tip occurs in
this region. The predicted values were considerably
larger than those measured. An explanation for this
lies in the difference between a real flow vortex with
viscous effects and a potential vortex represented only
approximately by a truncated series.

There is an indication, by virtue of the prediction
of velocity perturbations in the vicinity of the propeller
disc and of the resulting predicted side-force, that the
action of the propeller is either not properly represented
or that the series representing this action were not
carried to a sufficiently large number of terms.
Nevertheless, the force prediction for the 5-bladed
propeller with comparatively close spacing between

propeller and control surfaces was good. The predicted
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gradient of propeller side-force with number of ﬁlades,
however, was larger than that measured.

There was a breakdown of the velocity perturbation
predictions for larger spacings. This was traceable
to an accuracy problem in the computations that occurred
with large exponential values. The major portion of
this problem was corrected by simplifying certain
equations. Enough inaccuracy still exists, however,
to make the predictions for larger spacings generally

unreliable,

Conclusions

In the light of the results of the investigation,

the following conclusions can be made:

1. The experimental results give a very good
plicture of the force cancellation by the
propeller.

2. The theoretical method that was developed
appears to be a useable one.

3. The tneofy is being extended to its limits
when applied to a case with a strong vortex
present,

4. The theoretical approach can probably be
extended easily to the case of a ducted

rotating device.
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5. The agreement of theory with experiment is
sufficiently good to warrant further studies
concerned chiefly with improving the accuracy

of predictions.

Suggestions for Further Research

The following suggestions are made with regard to

future work in this general area:

1, Extension of work with the existing experimental
setup to cover other practical configurations
should be attempted.

2. VWays to improve the computing accuracy of a
study such as this should be undertaken.

3. An extension of the theory to the case of
control surfaces and propellers immersed in
the boundary layer of a body should be pursued.

4. An extension of this theoretical approach to

pumps and compressors should be tried.
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CHAPTER I
INTRODUCTION

Origin of the Problem

The design of a propeller, compressor blade row, or
similar axial flow turbomachinery device is normally based,
of necessity, upon the assumption of a steady, axisymmetric
inflow. A possible exception to this statement occurs in
the design of such items as helicopter rotors where the
use of cyclic pitch variation of the blades is employed to
compensate for the circumfcrential variations in the inflow.

In reality, there are many cases in turbomachinery
where radially and circumferentially varying distortions
or perturbations to the originally assumed inflow velocity
exist. Interest in distorted flows of this type may be
divided roughly into two classes. The first is character-
ized as the steady-state reaction of a blade row to a
distorted inflow. 1In this class of problems one generally
would be interested either in the reactive force of the
blade row caused by the distortion or in the flow that
leaves the blade row. The other class of problems is that
assoclated with the unsteady fluid dynamic reactions to
distorted inflows,

To a great extent, the unsteady analyses have dealt

with the application of non4stationary airfoil theory to



two-dimensional shapes passing through a sinusoidal gust
or a viscous wakel’ 2. Of interest here has been the
fluctuating forces and moments on a two-dimensional
airfoil resulting from such disturbances in the flow.

The calculations of the forces and moments are then
applied to the determination of the amplitude of torsional
oscillations of blades.

Extension of this work was performed by leyer3 in
which he determined the time-dependent pressure gradient
and velocity on two-dimensional blades of a blade row
passing through the viscous wakes of a preceding stage.

A further extension of this work was reported by Yeh and
Eisenhuth4 in which the transient effects were reduced to
2 quasi-steady analysis involving an equivalent angle of
attack of a blade section.

In the strictly steady-state studies, two basic types
of distortion - radia15 (axisymmetric) and circunferential6
(periodic in the peripheral direction) have been examined.
Yeh7 reported on a study in which he treated on the hasis
of classical actuator disc approximation, the flow behind
a rotor (or stator) blade row due to an arbitrary inlet
distortion along both circumferential and spanwise
directions. He showed that, in general, the spanwise and

the circumferential distortion waves interact, so that the

combined influence is not the sum of the influence of the



two simple types of distortions., Yeh's analysis assumed a
plane cascade. A need for a three-dimensional analysis of
distorted flows in cylindrical coordinates therefore still
exists. Methods of handling the three-dimensional aspects

8, 9, 10. The

of flow in turbomachinery are available
application of these to the problem of distorted inflows,
however, has not been attempted.
The need for an analysis of flow distortions in
cylindrical coordinates is particularly strong in terms
of propellers. A specific type of distortion occurs
with propellers in the propulsion of underwater bodies.
Often it is necessary in the design of underwater bodies
to place control surfaces immediately upstream of the
propeller. The deflected flow produced by the control
surfaces, when actuated, constitutes a flow distortion
that is partly carried through the propeller. The
propeller tends to straighten the deflected flow, thus
reducing the effectiveness of the control surfaces.
Combined with the need for a study of flow distortions
in c¢ylindrical coordinates, the practical problem posed
by the interaction between control surfaces and propellers

on underwater bodies forms the basis for this investigation.

Statement of the Problem and Its Limitations

The purpose of this investigation is, in general, to

determine the steady-state reaction of a propeller to



velocity perturbations induced by deflected control sur-
faces located upstream of the propeller. This is to be
accomplished by a theoretical development which will
permit the prediction of the velocity perturbations
throughout the field and make possible the calculation
of forces on the propeller produced by the perturbations.
The analysis is restricted throughout to the study of
incompressible, inviscid flow. The purposse is further
to be accomplished by an experimental wind tunnel program
in which the reactive force of the propeller and the
velocity pattern at various locations in the field is
measured.

Because of the many variables involved in a study
such as this, tkhe number of configurations and operating
conditions must be limited. The study is first limited
to the consideration of two control surfaces, 180 degrees
apart, which are both deflected the same amount in a given
sideward direction. Mathematically this means that in the
circumferential direction a cosine ( a zero degree circum-
ferential angle corresponds to the location of one control
surface) type distribution of the tangential component of
velocity disturbance is considered. Also, with regard to
the configuration itself, the propeller and control surfaces
are limited to the same hub and tip radius. The number of

blades is, however, varied to include 2, 5, and 10-bladed



configurations. The final configuration variable results
from the consideration of different spacing distances
between control surfaces and propeller. Three spacing
distances of 2, 5, and 8 inches are considered.

Although, in the problem of practical interest, the
control surfaces and the propeller operate in the radially
varying viscous wake of the body, the present study is
restricted to those cases with a uniform "primary"
velocity. The advance ratio (ratio of forward velocity
to the rotational velocity) of the propeller is variable
and is varied in the experiments involving propeller force
measurements. In the theoretical analysis and in the
velocity surveys downstream of the propeller; only the
design advance ratio is used. The velocity surveys
downstream of the propeller are, in fact, restricted to
one propeller configuration, one spacing, one advance
ratio, and one angle of attack of the control surfaces.
Variation of any of these in the surveys would have

involved a prohibitive amount of work.



CHAPTER 11

DEVELOPMENT OF THEORY

Formulation of the Problem

The model that was chosen in the formulation of the
problem is shown in Fig. 1. There is a given "primary"
velocity, v;, which is in general a function of radius.
The primary flow is assumed to be directed axially,
external to the cylindrical hub. The action of the control
surfaces and the propeller is represented by two actuator
discs, Disc A and Disc B respectively. Disc A serves to
introduce a flow distortion characterized by a tangential
velocity disturbance, \ T which is a function of radius, r,
and of circumferential angle, ¢ . This disturbance can
represent the action of one or more control surfaces.

Disc B represents the action of the propeller.
Certain characteristics, consistent with propeller theory,
are prescribed for Disc B. These characteristics, in
effect, take the time dependency aspect of the problem
out of consideration.

The flow field is divided into three separate regions:
Region (1) upstream of Disc A; Region (2), between the two
discs: Region (3) downstream of Disc B. The solution of
the problem involves the determination of the velocity

perturbations in all three regions.
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The approach‘ that in general is followed is to start
with the equations of motion and continuity equation in
cylindrical coordinates, make the assumption of very
small velocity and pressure disturbances compared with
the primary velocity, and then combine the equations to
produce a single differential equation for p, the pressure
perturbation. A series solution for this equation is
assumed, permitting the derivation of expressions for the
velocity perturbations in all regions. The velocity
perturbations are obtained from these expressions by proper

choice of boundary and matching conditions at the discs.

Solution of Pressure Equation

The equations of motion and continuity equation in
cylindrical coordinates were used in Appendix A to derive
the following differential equation in pressure

perturbation:

2 rédg* ° 2z2 69

*This approach to the problem was suggested by
Dr. H. Yeh of the University of Pennsylvania.



From the nature of the problem a solution for Equation (1)

of the following form can be assumed:

£Go) =35 Gp, R, )t eim?

(2)
When this solution is applied to Equation (1), th
following total differential equation results:
S2d (L d Rmn | R
V. = G+ G v (ke 22 ) R =0 "

For an arbitrarily prescribed V; - v;(r) , Equation
(3) can normally be handled only in a numerical way. If,
however, the distribution were given by some power law

such as V_(r) = cr®™ , Equation (3) could be written as:

(A o

If, then, a quantity é% is defined by:

2 2 2
Sm (5)

Equation (4) can be written as:



d;f;nn +(/ 2&)7__1 +( ot Sm I?m,,"'o ©

which is a Bessel type equation for which the solution is:
ok

z 5n(knnr) is, in general, a linear combination of
Bessel functions of both kinds. Even though m and o
are integers, 5,,, will not generally be an integer. The
solution, therefore, will include a linear combination of
Bessel functions of the first kind with like positive and
negative orders.

If the primary velocity, Vz , were considered as

uniform, that is:

Vz = constant U (8)

Equation (3) would reduce to:

2
L ok dlen ()~ B)R,, =0

dre r (9)
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This is simply Bessel’'s equation for which the solution

is, in general, z‘(k-nr). In other words:

Ron() =L, (kay 1) = Sy ChV )+ By Yoo lh, V) (10)

where:

J-(k-nr) = Bessel function of the first kind

Yﬂ(kmnr) = Bessel function of the second kind
ﬁnn = A constant depending on m and n
knn = The characteristic values or Eigenvalues

The problem that has been chosen is the one in which
V; is considered constant. This corresponds to the case
of a "free-stream'" condition as opposed to the case where
the control surfaces and propeller operate in the boundary

layer of a body.

Velocity Perturbations

Having obtained the solution of the pressure pertur-
bation equation, Equation (1), the component velocity
perturbations, Ver Vo and v, can be derived. This is
accomplished by first writing Equation (2) for each of
the three regions, substituting into the linearized
equations of motion, and integrating to determine each

of the three component velocity perturbations for each
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region. The details of this derivation and all the
resulting expressions are included in Appendix B. The
velocity perturbations are given by Equations (B-2),
(B-3), and (B-4).

The ability to calculate the velocity perturbations
in all regions becomes one of determining the coefficients
Ann’ Bnn’ c-n, and Dnn and certain of the functions of
integration (discussed in a later section) that evolved.
The procedure for finding these unknowns is one of

considering the physics of the problem,

Boundary Conditions

It is necessary to apply a boundary condition first
of all at the hub. The radial component of velocity per-
turbation at the hub must be zero which, upon examination
of Equations (B-2), (B-3), and (B-4), means that the slope
of the Bessel function, Z;(kmnr), must be zero.

It is not necessary to apply a condition at r = 0O.
All the velocity perturbations can be expected to decrease
to zero as r —» 00 because the Bessel functions and their
slopes all decrease to zero as r—» oo .

It is still necessary to apply a condition at some
outer radius. The tangential component of velocity

perturbation must be zero at such a radius. One would

expect that this would occur at the tip radius



12

of the control surfaces. It will be seen later from
velocity survey data that this is not exactly true and
that some radius slightly greater than the tip radius
must be chosen. This condition;, whatever the radius,
leads to the stipulation that the Bessel function itself
must be zero at that radius,

The boundary conditions that were just stated permit
the determination of the Eigenvalues for the problem. In

equation form, the two conditions can be written:

2 (honti)= o Chon )+ By Yo (hy13)=0
(11)

Z (kunte)= (k7o) + Bop Y, hnnB)=0

where rh is the hub radius and rO is the ocuter radius.

Solving this set of equations lsads to the relation:

Jm (khmn) X;('('»»nm) - Jn: (kmnr;') Xn (kmn r;) =0 (12)

which can be further altered by recurrence formulae to read:

o (km" r°)[y"(k"'" r")‘ ym-f-/(kmn r;a)_]
AR5 W AT ) R
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By obtaining the correct combinations of values for
the Bessel Functions, the Eigenvalues, k-n’ can be deter-
mined. Knowing the Eigenvalues, it is then possible to
obtain from one of the Equations (11), the values of ﬁnn‘

For instance:

@ - - Jm (km”ro>
mn Yoo (K, 15) as

Functions of Integration

The functions that resulted from integration when
determining the expressions for the velocity perturbations
can be analyzed and, by virtue of the physical problem
being considered, certain conclusions can be drawn as
to their existence.

In Region (1) one could ordinarily assume that as
Z —> -0o0 all velocity perturbations would approach zero.

This consideration necessitates that:

Lirg) = g, (r@)=hthe)=0 (15)

because the rest of the expressions for the velocity
perturbations in Region (1) go to zero as z goe®s to — oo .

In Region (2) the analysis of the additional functions
is more complicated. Consider, first, the function,

gz(r,¢>). It can be reasoned that this additional function
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represents that part of the solution that is lost when
m = 0 (See Equations (B-3)). As such, gz(r, 99 ) = gz(r)
would represent the mean "swirl" that is produced by the
control surfaces and is therefore a function only of
radius. For the case of two control surfaces deflected
in the same side direction the net swirl is zero. In

other words, for such a special case,

g.(r) =0 (16)

The function hz(r,¢9) can in general exist. On the
other hand, when Equations (B-3) are substituted into the
equation of continuity, Equation (A-7), and the boundary
condition, V. = 0Oat r = Tys is used it is observed that
tz(r, #) must necessarily be zero, regardless of whether
gz(r) was zerc or not.

In Region (3) the function ga(r,sﬂ) could again
represent the mean swirl leaving the propeller and would,
therefore, be a function only of radius. A mean swirl
would exist if the propeller were a "thrusting propeller',
that is, in the absence of a flow distortion the propeller
were producing a thrust. This function could, therefore,
be specified as a characteristic of the propeller. 1If
the propeller were a 'nonthrusting propeller" gs(r)

would be zero.
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The function, ha(r,qﬁ), could in general exist but
would be determined in some manner by the function ga(r).
Because of this, it would likewise be a function only of
radius. This is consistent with standard propeller theory
which deals only with circumferentially mean values. The
function, fs(r,qp), would again have to be zero to satisfy

the continuity equation.

Unknowns
To summarize at this point, one can list the following

a8 the unknowns of the problem:

1. Ay, 5. by(r,P)
2. B, 6. g3(r)

3. Cun 7. hg(r)

4. D

The functions listed can also be written in series
form with appropriate coefficients. The coefficients
can then be considered as the unknowns permitting easier
handling of the solution. Several of the unknowns can
be determined directly while the others must be determined
a8 the unknowns of a set of simultaneous equations. The
seven relations necessary to determine these unknowns are
listed below and discussed in turn in the seven following

sections,
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1. Specification of flow distortion at Disc A
2. Specification of propeller mean swirl

3. Propeller normality condition

4, Continuity at Disc B

5. Continuity at Disc A

6. Relation between tangential velocity perturbations
at Disc A

7. Relation between tangential and axial velocity
perturbations at Disc B.

Specification of Flow Distortion at Disc A. The

distortion introduced by deflected control surfaces is
characterized by the distribution of the tangential

velocity perturbation, Va o immediately downstream of the
2

control surfaces. It is possible to calculate this
perturbation by use of existing wing theories. On the

other hand, since Va is the starting point of the
2

calculation and can be arbitrarily assigned, it would be
physically more meaningful to actually measure the
distribution of distortion and use that in the calculation.
This is the approach that was followed in this study.

The distribution of vu2 in the circumferential and
radial directions, however determined, constitutes an

input to the problem. What changes occur in all the

component velocity perturbations through the field due



to the action of the propeller constitutes the output
to the problen.
Having arrived at a distribution of Va immediately
2
behind Disc A, a Fourier-Bessel type analysis can be
made. This is accomplished by first letting:

(m@

“z

v

Z (k,,1) C 7)
at the z = -d location, i.e., immediately downstream of
Disc A. The coefficient, P.n, can then be found by use
of:

ra -t
fonn _ _1 /rZ,.,(Ai..,,r)dr/(r _g)c Wa@? (18)
/ /

Kmn T Ny, A

where Nnn is the normalizing factor and is given by:
A —f /" e
r[z ﬂ’mnr =‘2'°‘[m+/("’062] [Z ﬂ;m _7 (19)

Yu is also given by Equation (B-3) which allows
2
the writing of the following relation for a single

two-dimensional wave in r and qu

Pm = ‘lm B’nn C 'Md‘f' LMC 6‘7’"’4 (20)

n

T
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Since phn is known, this is simply a relation between

cnn and Bnn which can be written as:

5 2k, d

' K
mn + ’;T ’fm c nn Al (21)

= C;”h c

Bnn and cmn are, in general, complex.

Specification of Propeller Mean Swirl. As stated

previously, the function gs(r) is used to represent the
mean swirl introduced by a thrusting propeller. This
function exists when there is a thrusting propeller
regardless of whether there is a distortion or not.
gs(r) can therefore be specified independently of the

rest of the problem and can be defined as:

Es(r> = % Lo,e Za (ko.zr) (22)

Knowing gs(r), the coefficients, Lol’ can be determined
in a manner similar to that given by Equation (18), but
without the trigonometric integral included. The
Eigenvalues could be determined with the same boundary
conditions used previously.

In the specification of gs(r) it is necessary to
resort to propeller theory. Fig. 2 illustrates a typical

velocity diagram for a particular blade section. The
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diagram demonstrates the action of a propeller section at

normal operating conditions in the absence of a flow

distortion.

The following definitions apply:

¥ =

Component of induced velocity in the z direction

Component of induced velocity in the circumfer-
ential direction

Relative velocity at the blade section
(midway between regions 2 and 3)

Primary velocity or free-stream velocity

- r
Relative radius (- R;')

Propeller Radius
v
Propeller advance ratio -

2n RP

Rotational speed (rps)

Angle of resultant velocity at the propeller
blade section

The numbers 2 and 3 on the diagram in Fig. 2 refer to

conditions immediately upstream and downstream of the

propeller

disc respectively. This indicates that the full

value of the tangential component of induced velocity,

2't’ is reached immediately behind the disc. Right at

the blade

exist.

section half the value or just v, is assumed to



20

On either side of the disc, the axial component of
induced velocity is LA Upstream at - oo the axially
induced velocity is zero. Downstream at 4+ oo the value
has reached 2'&'

For a specific propeller the function, ga(r), can

be given at a particular radius by:

£ Wy
g,(r):z_f_.__l_.ﬁé...\_/g_c (23)
»& 2 2a27rr VQ £
where:
K = Goldstein averaging factorl! (function of
r, J, B)
B = Number of blades
¢ = Section chord length
¢, = Section 1lift coefficient, = ¢, » the 1lift
o

coefficient at zero angle of attack, when
the section chord is aligned with Ve.

Propeller Normality Condition. A condition is

available from propeller theory for the determination

of h3(r). The condition of normality states that the
resultant induced velocity at infinity is normal to the
trailing vortex sheet. 1In terms of the velocity diagram

in Fig. 2, this means:

2 X L

Ve ] +~ 2 e 24)
2 Y rx . vz

% / V%
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Making use of Equations (23) and (24) and dropping higher
order terms:

€ ‘-”V:z = £ (Z2) gy(r)

J (25)

The axial component of induced velocity is thus given
in terms of the function gs(r). It is convenient to define

the function, h3(r), as:

hy(r)= K f—%— = é(-’ﬁ—’-‘-) g3(r) (26)

Because h3(r) will not vary with a change in axial
distance, this definition does not completely follow
propeller theory. 1In other words, hs(r) will not reach
the full value of 2wa at + @ ., This results from the
linearization process in the problem in which the
perturbations are carried along by the primary velocity,
V;. It does not appear to be a serious source of concern
in handling the problem because ha(r) actually drops out
of the problem when later relations are applied.

The function, h3(r) with the help of Equation (23)

can be written as:

hy (1) --é-(lf‘-)(alc %)’f(?)ég?% Ce (21
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A8 in the case of 83(1'): it can also be put in series form:

hi(r) =3 I, Z(k,r) )

where h3 (r) is given by Equation (27) when performing a

numerical analysis,

Continuity at Disc B. Continuity at Disc B means

simply that at x = d:

Vz, = V2 (29)

This relation involves the functions of h3 (r) and hz(r,¢).
h3 (r) has already been defined in Equation (28). If the
case of a nondistorted flow is considered, hz(r,¢) must
actually be equal to hs(r) by virtue of Equation (29).

It is therefore convenient to define h2(r,¢) in the

following manner:
h(r9)=22G,, Z, (&n”)¢‘m¢+§ Lo Zkr) a0y

Using, now, the v, equations from Equations (B-3) and
(B-~4) and employing Equations (28) and (30), continuity at

Disc B yields for a single two-dimensional wave in r and

P

]
D, = (&) G, - e, rhe bt

mn’ m mn  (31)
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Bnn was eliminated in this equation through use of Equation

(21).

Continuity at Disc A. As in the case of Disc B,

continuity can be employed at Disc A so that at z = -d:
/155 = /ﬂ/;z (32)

Again the function hz(r, ¢) is involved. In the case of

nondistorted flow, Equation (32) means that there must

be a function hl(r):

b =3 L, Zlk,o) @)

It had previously been reasoned that hl(r, ¢0 was
zero, If the action of the propeller could be more
accurately represented, hl(r, ¢>) would actually be zero.
The action of the propeller with regard to the axially
induced velocity is thus represented as not varying in the
axial direction.

Using the v, equations from Equations (B-2) and (B-3)
and employing Equations (30) and (33), continuity at

Disc A yields for a single wave:
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Again, Bnn was eliminated through use of Equation (21).

Relation between Tangential Velocity Perturbations at

Disc A. Consistent with the linear aspects of the problenm,

& relation of the following form is needed:

S, AT,
_l:_"' = A + B \;' 35)
\/} 2

One of the choices that can be made is that A = 0 and

B=1. In other words:

Voo _ Vg, (36)
\72 \/Z

This is contrary to the normal concept of an actuator disc
in which the tangential component of velocity changes
discontinuously across the disc. If this relation is
used, the disc location could be thought of more as a
place which is mathematically convenient for specifying a
distortion, but which involves no discontinuous changes.
This might not be the best type of relation to use for

the physical case under consideration, where the tangential
velocity does change abruptly. Equation (36) might best
be used where a distortion is introduced farther upstream
but which is measured at a location corresponding to that

of Disc A.

Another approach that might be considered is derived
by looking at the distribution of induced velocity about
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a wing. The induced velocity at a particular point is
composed of contributions from both the bound and trailing
vortex systems. If one considered the contribution of a
bound vortex alone, one could write:

/U:'z - - ’U:/ (37)

If, on the other hand, the contribution of the trailing
vortex system is considered alone, the following could

The w is the normal designation given to the induced
velocity at the wing due to the trailing vortex system.
A value of 2w is induced by this system at infinity.

What occurs in reality is a combination of these two

effects. Omne could say, for instance:

/u_z" - W4 Ty (39)
Ve Vz Vz
and
’VE" = —;b‘d: - f&,_ (40)
Ve Vz Vz



where v is the velocity due to the bound vortex. A

BV
solution of these equations yields:

sy Sy
e o2 - I (41)
\/z_ Z 72.
If the following definition is made:
- =«
Q = %, (42)
then
Ve A
(1-20) =2 = - Zx (43)
f -

Zz

There is a question of how Equation (43) would be

used. Actually vu and Vu could be measured in lateral

2 1
planes just aft and just ahead of the control surfaces.

Further, w at the wing can be related to the 1ift of the
wing or the distribution of 1ift along the span. Equation

(43) could then merely be used as a check on the Ya and
2
v measurements.
b
In any event, the knowledge 0f two of the variables

W, VvV, » OF vV, yields the third. The choice of how this
2 1
is done depends upon the circumstances under which the

problem is being solved.
Let it be assumed for the present case that the Ya

1
distribution is known and is related to v‘b through
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Equation (43). The coefficient A.n can then be determined
directly. From Equation (B-2), Va at z = -d can be
1

written as:

*

g ¢ ~knnd Mm@

=t=-25 T Amn Ly (ln) € TTE T
f 3

Ann can then be found in the samc manner that P-n was

determined:

m hnnd [ r* g
m mn = -  Va, 4
i e Amn v A, { er(kmr)d': 7r(r -é-)c ay (45)

mn

where Nin is defined in Equation (19). For ease in later
application, it is convenient to define a coefficient,

)
Amn’ which is of the same form as Pin:

A/ _ ‘,m c"kmnd

" Aoy (46)

Relation between Tangential and Axial Velocity

Perturbations at Disc B. If a distortion were introduced

by Disc A, the velocity diagram shown in Fig. 2 would be
altered in a manner as represented in Fig. 3. In Fig. 3
part of the altered diagram is superimposed over the
original velocity diagram of Fig. 2. It should be noted
that v in the diagram includes both the induced

z
2
velocity v. and an increment of axial velocity due to the



original disturbance and the reaction of the propeller

to that disturbance. Using this velocity picture as a

basis, a linear relation between v , v_ , and v of
Uy 2 us

the following form can be derived:

Vs _ Ve, Vi, 47)
-372‘-— K(r) '+'AA(7>‘T2: + N(r) cé

Z

The derivation of Equation (47) and expressions for
K(r), M(r), and N(r) are given in Appendix C. The case
that will be studied is that of a nonthrusting propeller
which causes the K{:) term in Equation (47) to be zero.
It is also shown by virtue of Equation (C-29), that
whether or not a propeller is thrusting has no effect
on the final results. Terms involving the normal action
of the propeller cancel each other in Equation (47).
For calculating the effects of flow distortions, therefore,

one can always consider the propeller as nonthrusting.

Solution of Unknown Coefficients

Enough relations are now available to determine all
the unknowns that were previously listed. Of those
originally listed ha(r) and ga(r) can be determined
independently of the rest of the problem. It was also
assumed that a knowledge of vul Just upstream of Disc A

was available so that the coefficient A.n could be
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determined directly. This left to be determined the
coefficients B, , C, , D, , and O, . The coefficient
ohn replaces the unknown function hz(r,qﬁ).

The first of the equations available for the
solution is Equation (21). This has already heen used
in eliminating Bnn from succeeding equations. Two of
remaining three equations that are necessary are
Equations (31) and (34). The third equation is
Equation (47). No simple relation between coefficients
can be derived from Equation (47), however. Because
the K(r), M(r), and N(r) terms are not constants but
vary with radius, it is necessary to define additional
coefficients which further complicate the solution.

The details of getting Equation (47) in a suitable form
for solution is presented in Appendix D. The equation

is solved for the coefficient, C.n.

The remaining unknown, B

an’ oin’ and Dnn’ can be

found in turn by substituting the values of c.m in
Equations (21), (34), and (31) respectively.

Equation (21), after substituting for C.n in the
form of Equation (D-11), will read:

2kp,d Konnd 2hmpd
&»:EC '7+‘6%ﬁqcm1‘FC M) (48)

n
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I1f similar substitutions are made in Equations (34) and

(31), the following equations will result:

kond Ky 1nd /
Opn=2Ec™ +i(h By—2Fe™ it A,,) (49)

Dmn = ckm’ds £

. Kl Kopd
+ ¢ (—g c’('”""'u £,~€ "MSF-tE ””’A,,,’,,) (50

S and U are defined in Equation (D-5).



CHAPTER 111

MEASUREMENT OF FLOW DISTORTION

Experimental Setup

The flow distortion was determined experimentally in
this investigation in the subsonic wind tunnel at the
Garfield Thomas Water Tunnel of the Ordnance Research

12 has an octagonal test section

Laboratory. This tunnel
with a nominal diameter of 48 inches.

The same basic model was used for both the measurement
of the flow distortion and for the reaction of the
propeller to the flow distortion. However, in the
distortion measurements, there was no nead to have a
propeller or force sensing instrumentation. Therefore
an "interim" model was used.

The essential components of the interim model include
an 8-inch diameter housing supported by a streamlined strut,
a 5-inch diameter cylindrical sleeve (hub), two control
surfaces, a wood nose section, and a supporting stationary
shaft. Views of the model can be seen in Figs. 4 and 5.

The 8-inch diameter housing is, in reality, a torpedo
model with its upstream and downstream ends reversed.
Normally it will house the electric motors to turn the

propellers. In this setup, it is used primarily to
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support the rest of the model. In the final model, it
is also used to house a twenty horsepower motor.

The control surfaces are mounted on the upstream end
of the model. The surfaces are, therefore, operating in a
uniform flow or free-stream condition. The control
surfaces are independently moveable over a range of
approximately plus or minus six degrees.

The design of the control surfaces consists of a
tapered planform in which the chord length varies
linearly from 4.66 inches at the hub to 3.00 inches
at the tip. The section shapes are standard NACA 65-009
airfoils all along the span. This designation indicates
a symmetrical section with a maximum thickness-to-chord

ratio of 0.09.

Instrumentation

The measurement of the velocity components ﬁas
accomplished by use of a three~-dimensional pitot-type
probe. The probe is shown in Figs. 4 and 5. It is a
commercially available instrument, manufactured by the
United Sensor and Control Corporation, Glastonbury,
Connecticut and is designated as a DC-120 type probe.

The probe incorporates fiQe pressure holes, the
center hole giving a measure of total head. Two
horizontally orientated holes indicate variations in

yaw angle and two vertically orientated holes indicate
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variations in pitch angle. The pressure holes are
connected by tubes to a manometer board.

The probe is mounted on a traversing unit, shown
in Fig. 5, which permits orientation of the probe in
the vertical and lateral directions for a particular
lateral plane. The traversing device also permits the
changing of the pitch orientation of the probe. A dial
with a vernier device makes it possible to read changes
in pitch angle to about 0.1 degree.

Calibration curves were available with the probe
but were found inadequate for the accuracy of measurements
that were needed. Calibration of the probe was, therefore,
performed in the wind tunnel, taking into account the
change in yaw angle indication due to the bending of the
probe shaft.

The procedure for using the probe is to orientate
the probe in the desired location, change the pitch of
the probe until the manometer readings associated with
pitch are balanced, and then read the pitch angle and
the level of the rest of the manometer tubes. Calibratidn
curves relate the manometer readings to the yaw angle and
to the resultant velocity. With the resultant velocity,
the yaw angle, and the pitch angle knoin, the components
of velocity in the radial, circumferential, and axial

directions can be calculated. The manometer readings of
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the probe were referenced to a tunnel pitot tube so that

results are given as velocity ratios.

Experimental Procedure

The purpose in making the velocity surveys was to
learn the velocity perturbations in planes just upstrean
and downstream of the control surfaces and from these to
determine the coefficients Ann and pnn in the problenm.
Two such planes were chosen and one quadrant thoroughly
surveyed in each plane. Points in neighboring quadrants
were checked to make sure of symmetry. The assumption was
made that the distribution of the disturbance would have
the same form in each quadrant. Except for some slight
variations near the control surfaces, which were within
the accuracy of the measurements, this assumption was
experimentally verified.

Because of the physical limitations on positioning the
probe, it was necessary to take measurements with the
control surface placed first in a vertical plane and then
rotated 90 degrees to lie in a horizontal plane. This
allowed a full coverage of points in a single quadrant.

The proximity of the probe to the trailing edge of
the control surface gave rise to effects traceable to
the finite shape of the airfoil sections. The wedge
formed by the trailing edge of each section influences

the flow in such a way that it produces tangential



35

components of velocity in opposite directions on either
side of the trailing edge. This means that there is a
rapid change in the tangential components when passing
circumferentially by the trailing edge. The same effect
occurs at the leading edge. This effect occurs whether
or not the surfaces are deflected. At angular locations
closer to the trailing edge, part of the effect might be
traceable to the viscous wake shed by the surface.
Immediately downstream of the trailing edge the low
velocity region in the wake is replenished by fluid from
outside the wake, thereby producing tangential components
in opposite directions on either side of the trailing edge.
Because the interest is solely in the perturbations
caused by the deflection of the control surfaces, it
seemed advisable to subtract the effects of finite shape
from the measurements. It is also likely in measurements
of this type that other extraneous velocity perturbations
are already present even when the control surfaces are at
zero angle of attack. The procedure that was followed was
to take measurements with the control surfaces deflected
and at zero angle and subtract the readings to obtain the

net perturbations.

Experimental Results

Because of the great amount of time necessary to

make the velocity surveys, measurements were made for
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only the 0O-degree and 3-degree angle of attack cases.
These were performed at a nominal tunnel speed of 100

feet per second. A plot of typical experimental results
are shown in Fig. 6. This shows the discontinuous change
in tangential velocity that occurs when traversing past
the trailing edge of the control surface. One can also
note the increment of velocity that exists between the
O-~degree and 3-degree cases. This increment stays roughly
the same for corresponding points on either side of the
trailing edge.

Because the tangential components of velocity are
the ones that constitute the input to the problem, these
data were plotted and cross-plotted several times to
insure smoothness of the distribution curves in both the
radial and tangential directions. The resulting curves

of Vu and V. are shown in Figs. 7 and 8 respectively.
1 2

Figs. 9, 10, 11, and 12 are plots of the experimentally

measured values of v_ , v_ , v_ , and v respectively.
y T2 % Z2



CHAPTER 1V

MEASUREMENT OF PROPELLER REACTION
TO A FLOW DISTORTION

Experimental Setup

The measurement of the reactiin of a propeller to
a distorted inflow consisted in measuring the reactive
force of the propeller and in surveying the velocity
field leaving the propeller. Views of the model used
for these tests are shown in Figs. 13 and 14, The changes
in the model from the interim model included addition of
a propeller, variable spacing between the propeller and
control surfaces, an electric motor within the main
housing to power the propeller, and instrumentation to
measure the side force of the control surfaces and the

reactive force of the propeller.

Propeller Design

The propeller was designed to have different numbers
of blades (2, 5, and 10). This is possible because the
propeller fabrication process at the Garfield Thomas
Water Tunnel is one of making individual blades and
mounting them on a hub. Hub blanks can be inserted when

blades are removed.
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The hub and tip diameters of the propeller are the
same as those of the control surfaces. The chord length
and thickness ratios of the blades were varied linearly
from values of 3.0 inches and .0900 at the hub to 3.25
inches and .0775 at the tip. Symmetrical NACA Series 16
airfoils were used throughout.

The advance ratio (J = V;/nn) of the propeller was
chosen to be 2.0. This is a representative advance ratio

for the propulsion of underwater bodies.

Instrumentation

The force measurements for both the control surfaces
and propeller were done with electrical strain gages.
Sketches of the main features of the strain-gaged
assemblies are shown in Fig. 15. The strain gages in
this application are used as transducers rather than purely
strain measuring devices. Calibration was performed
statically with known weights. It was necessary, because
of the very small forces that were measured and the drift
in the readings, to calibrate before and after each run.

The readings were taken on a Leeds and Northrup
Speedomax recorder. The rpm of the propeller was
measured with a Hewlett Packard electronic counter.

The same three-dimensional probe used with the interim
model was used for the velocity surveys downstream of the

propeller.
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Experimental Procedure

The force measurements were made over a wide range of
conditions. The number of blades was varied to include
2, 5, and 10 blades. For each one of these propellers the
spacing between propeller and control surfaces (=2d) was
varied over values of the ratio, 2%—, of 0.267, 0.667,
and 1,067. These distances were -ezsured approximately
fron the trailing edge of the control surface at the hub
to the leading edge of the propeller.

The advance ratio of the propeller and the angle of
attack of the control surfaces were also varied. Angles
of 0, +3, +6, and -3 degrees were used. The procedure
followed was to zero the recorder at the 0 angle of attack,
change the angle quickly to one of the three angles
mentioned, take the reading, and then return to a zero
angle to see if there was a return to a zero reading.
This technique was again necessary because of the very
small forces and the drift in the readings and was made
possible by a simple angle of attack changing device. This
device consisted simply of an 1nterna1‘yoke connecting the
two control surfaces which was held at prescribed positions
by detents. By pushing or pulling on this yoke with a long
rod, the position could be changed. The rod was inserted

through a small hole in the wind tunnel and then through



another hole in the wood nose of the model. This latter
hole is visible in Fig. 14.

The velocity surveys were taken in a plane immediately
behind the propeller and in one about nine inches downstream
of the propeller. The same procedure used in the previous

surveys was followed here.

Force Measurement Results

For convenience and ease of handling the forces
measured for the propeller and control surfaces were
reduced to nondimensional coefficient form. The type of
coefficient used is defined by:

F’
Cf = (51)

2PV TE

where:
F = a force
(° = mass density of air

p

Coefficients defined in this manner for the side

propeller diameter

force of the control surfaces, side force of the propeller,
and vertical force of the propeller are designated ccs’
CH' and cv respectively. The side force direction is taken
as perpendicular to the longitudinal plane in which the

control surfaces lie. The vertical force direction is
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parallel to this plane. Plots of these coefficients for
varying conditions of numbers of blades, spacings, advance
ratios, and control surface angle of attack are shown in
Figs. 16 through 24. It will be observed that the variation
with advance ratio is very small. The greatest changes
appear to occur with the vertical force coefficient of the
propeller.

To study how the force coefficients vary with angle
of attack of the control surfaces, plots were made for a
constant value of advance ratio. The advance ratio chosen
for these plots is the design advance ratio, J = 2.0,

The resulting curves are seen in Figs. 25 through 33.

They appear to be essentially linear. Because of the
linearity, comparisons can be made at any angle of attack.
An angle of 4+3 degrees was chosen and the coefficients
plotted versus spacing distance in Fig. 34. Practically
no difference in coefficients is noticed with spacing
distance.

For any spacing then a comparison between numbers of
blades can be made. This was done and is shown in Fig. 35.
One of the curves shows the percentage of side force
cancellation by the propeller for different numbers of

blades.
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Results of Velocity Survey

The results of the velocity surveys are helpful in
giving some idea of how much of the original distortion
passes through the propeller. Figs. 36 and 37 (for ;; -
0.133 and 1.200) show how the tangential disturbance
resulting from a 3 degree control surface angle has
changed for the 10-bladed, gg; = 0.267 spacing case.

No attempt was made to surveyhdovnstrean of the propeller
for any other cases. Because of the danger of the probe

being struck by the propeller, no surveys were made just

upstream of the propeller.



CHAPTER V
THEORETICAL COMPUTATIONS

Elgenvalue Calculations

The computations proceeded along the lines already
discussed in Chapter 1I. It was necessary to go to
machine computation because of the difficulty and length
of the calculations. For this purpose the IBM 1620
computer at the Garfield Thomas Water Tunnel was used
in developing and proving the programs. The IBM 7074
computer of the Pennsylva;ia State University Computer
Center was used for the bulk of the actual computations.
Details of how certain types of calculations were
handled are presented in Appendix E. Detailed Fortran
programs and flow charts for all computations performed
in this investigation are available in Reference 20.

The first computations undertaken were of the
Eigenvalues. These were found by use of Equation (12).
The procedure that was necessary was to choose successive
values of k_n until Equation (12) was satisfied. This
procedure was eventually incorporated in a computer prograna

wkick included a Bessel function subroutine. The ﬁmn

constants were calculated from Equation (14).
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The choice of how many orders of Bessel functions
and how many Eigenvalues within an order resulted from
examination of the A;n and pnn calculations. The A;n
and Pin values were calculated from Equations (45) and
(18) respectively. The convergence of Equation (17) was
rather slow with the distribution in Fig. 8 and a choice

of 16 orders and 16 Eigenvalues for each order was made.

The Va series of Equation (B-2) converged more rapidly.
1

The distributions that resulted from the chosen number of

terms are shown in Figs. 40 and 43. The calculated Va
2

values, although not so close to the measured distribution

as the v, case, were considered sufficiently close to be
1

meaningful.

Propeller Properties

Before calculating cnn from Equation D-9, the
functions M(r) and N(xr) had to be éilculated. The
properties of the propeller described in Chapter IV
were used for this purpose. The slopes of the 1ift
curves as well as the X values for the 2 and 5-bladed
propellers were obtained from Reference 12. The
values for the 10-bladed case were calculated as the more
approximate Prandtl tip loss factor:

, (/-}%i).]

-/ -8
£ == cos cx,o[z- qrr

(52)
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In each case, corrections for finite hub ef!ectslS were
applied to the £ values.

The resulting distributions of M(r) and N(r) are
shown in Figs. 38 and 39. The summations based on M(r)
and N(r) necessary for the C,, calculations are given in

Table I. Twenty terms were used in these suwumations.

TABLE I

Summation Values for K, 05, Mg

B 5 % S Ve Z Me
2 .4342 .2611 .4632
5 .8351 .0584 4632
10 1.0662 -.0886 .4632

Computing Accuracy

The computation of the cnn coefficients and the

other unknown coefficients introduced some questions of
accuracy. The determination of E and F (Equations (D-12)
and (D-13) involved the subtraction or addition of some
very large numbers. The large numbers resulted from the
large values of the exponentials when the spacing distance
and the order of the Bessel functions became large. The
difficulties were felt in the determination of both the

real and imaginary parts of c.n and consequently in the
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other coefficients which depend upon C-n' Values of E

and F, when obtained directly from Equation (D-9), were
often extremely high. To alleviate this problem Equations
(D-12) and (D-13) were rewritten. In the case of Equation
(D-12) some of the very large terms cancelled. Equation
(D-13) was put in such a form that, for exponentials
beyond a certain size, the expression could be simplified.
The manner in which these equations were altered appears
in Appendix F. Ip Appendix F it is shown that for
sufficiently high values of Ck'""d the term F reduces to:

F=c

-km d /D
SN (53)
”
When Equation (53) is substituted in Equations (48),

(49), and (50) the expressions for B.n’ Oun’ and D_

become:

2hund
Bmy = £ C (54)

kmnd 1 a? _ /

k., ,d
Konnd e

' /
Don = € SETS R
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By examination the value of k-nd beyond which to
use Equations (53), (54), (55) and (56) was chosen to
be 8.5.

Calculation of Velocity Perturbations

| By substituting the appropriate coefficients in the
series list«d in Appendix B, the velocity perturbations
at any point can bhe computed. Thelreal part of the
combination of coefficient and C"‘mfin each series is
the part that has physical significance.

The velocity perturbations were calculated for a
series of conditions to determine the effects of numbers
of blades and spacing distance. For the shortest spacing
distance (2%_ = 0.267) calculations were made for 2, 5 and
10-bladed przpellers. For the 10-bladed propeller
calculations,spacing distances corresponding to 2%; = 0,267,
0.667, and 1.067 were performed. This gave a total of
five distinct sets of conditions.

The computations of the perturbations in Region (1)
and just downstream of Disc A in Region (2) would be the
same regardless of what set of conditions was being
considered if it is assumed that the inputs are unchanged.
Calculation of the perturbations at these locations was
therefore performed only once. The results of these

calculations are shown in Figs. 40 through 44.
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Comparison of the calculated tangential components
Just upstream and just downstream of the control surfaces
with the measured values were already made and assumed to
be adequate. The vr and A/ calculations at the same
locations show how well these components can be represented
on the basis of coefficients derived from just the v

u

distributions. The A and v, computed distributions
1 1

just in front of Disc A are also seen t0o compare reasonably
well with the measured values. Just downstream of Disc A,

however, the calculated Ve values are found to be
2

considerably at variance with those measured in the region

of the tip radius. The measured v, values in the same
2

plane do check fairly well with the predicted except at
points very close to the trailing vortex from the control
surface tip.

The calculated effect of the propeller on the
distortions are shown in Figs. 45 through 49 for the
case of d = 1,0 inch and B = 10. The predicted violent
radial perturbations are still present just upstream of
the propeller but are radically reduced downstream of the
propeller. In all cases calculated continuity at both
discs was maintained. For this reason vzz and vz3 are
always plotted as being the same. Angular locations
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other than in the first quadrant are shown for this set
of conditions to demonstrate the manner in which the
disturbances have ceased to follow strictly cosine or
sine type distributions.

Distributions at the propeller for all the remaining
sets of conditions are shown in Figs. 50 through 65. The
important observation to be made is the apparent dis-
ordered distributions that are present with spacings
larger than d = 1.0 inches.

Prediction of the velocity perturbations nine inches
upstream of the control surfaces and nine inches down-
stream of the propeller were made. In both cases the
results were indistinguishable from zero and were

therefore not reported.

Calculation of Propeller Forces

With a knowledge of the velocity components before
and after the propeller, the torque force at each radial
location of the propeller can be determined. By taking
the component of this force in the side and vertical
directions an estimate of side and pitching foree can
be made.

From standard propeller theory a torque force

coefticient defined as:

C

)

Q@s + PV,E T /‘?Pz (57)
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can be expressed in terms of the velocity perturbations at

Disc B:

t

/.0
Co = 4, TN T e

One can perform this integration at various angular
locations and then find the mean component of force in

both the side and vertical directions by use of:
27

o=y ) Cop ¥ A (59)
and
arw
C, =35 ) Co 77 77 (60)

The results of this type of calculation are shown in
Table II. The coefficients are the same as those used for

the experimental measurements.

TABLE I1

Calculated Force Coefficients

2d

X B Ch Cv
0.267 10 - .0362 + .0264
0 0267 5 - 00122 - .0031
0.267 2 0.0 0.0
0.667 10 + .0082 0.0

1.067 10 + .0085 - .0143
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The Cn value for the d = 1.0, B = 10 case is high
compared to experiment. For the 5-bladed propeller Cn
is close to measured and for the 2-bladed propeller it
is low. The increase of cn with numbers of blades is
therefore greater than shown by experiment. The variation
with numbers of blades of predicted and experimental cn’
and Cv values are compared in Fig. 66.

The magnitude of C, for the first listed case also

v
appears to be very high. The cH and cv values for the
larger spacings and the plots from which they were derived

generally appear unreliable.



CHAPTER VI
DISCUSSION OF RESULTS AND CONCLUSIONS

Experimental Results

The experimental phase of the investigation had the
dual goal of measuring the disturbed flow and of measuring
the force reaction to the disturbed flow. These goals
were accomplished. The first phase of the distortion
measurements was primarily to determine the disturbance
to be used as the input to the theoretical solution.

The second phase was directed toward measuring the flow
perturbations after having passed through the propeller.

The distribution of the vu3 perturbation measured
immediately downatream of the propeller (Fig. 36) shows
that the general shape of the original disturbance is
maintained, The magnitude is less and as such is a
measure of the force reaction of the propeller. The
perturbation still was present nine inches farther down-
stream although again furtner diminished (Fig. 37).

The force measurements gave a quantitative picture
of how the effectiveness of the control surfaces is
reduced. As one would suppose, the maximum reaction
occurs with the 10-bladed pgopeller. The cancellation
was about 34 per cent for this case. From the shape of
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this curve in Fig. 35, the variation with numbers of blades
has leveled at about 10 blades, indicating that it
represents close to the maximum reaction.

The force measurements show further that the
reaction is linear over a range of angles to 6 degrees.
At some higher angle this linearity must cease to exist,
but in the linear range the percentage of force
cancellation is the same. The comparatively constant
reaction with changes in advance ratio show that the
theoretical result that the reaction of a thrusting or
nonthrusting propeller is the same is reasonably accurate.
The force measurements showed practically no variation

with the spacings investigated.

Theoretical Results

A measure of the theoretical development can first
be made in how well the original disturbed flow can be
represented. The Va disturbances before and after the
control surfaces were represented reasonably well by
their respective series. The calculated vr2 downstrean
of the control surface, however, varied considerably
from the measured values. A possible explanation for
this lies in the difference between a real flow vortex

with viscous effects and a potential vortex represented

only approximately by a truncated series. Mathematically
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the source of trouble is traceable to the slopes of the
Bessel functions. Because of the abrupt change in vu2
at the tip region of the control surfaces the cumulative
effect of the Bessel function slopes is very strong.

The effect of the propeller on the flow just upstreanm
of the propeller is an interesting one. As seen in Figs.
45, 50, and 55, the vortex near the tip region apparently
reverses. The tangential perturbation is generally
reduced as it approaches the propeller. The greatest
reduction, however, occurs with a smaller number of blades.

In Fig. 48, the tangential perturbation is seen to
be generally negative after passing through the propeller.
When the distortion feeding into the propeller is
generally positive, it does not seem likely that the
tangential flow leaving would be negative. This is an
indication that the propeller action is not properly
represented either through the original factors M(r) and
N(r) or through an insufficient number of terms in the
series representing these factors. The convergence of
these series was not very complete after 20 terms,.

The breakdown of the perturbation predictions for
larger spacings probably has its origin in th;waccuracy
problem described in Chapter V and Appendix E. Although

the accuracy was improved greatly by simplifying the
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coefficient equations beyond a certain value of k-nd, the
choice of what k.nd to use as the dividing point may be
fairly critical. The effect of the accuracy problem on
the predictions of the force reactions follows logically.
The force coefficients predicted for the larger spacings
do not appear to make much sense.

The prediction for the g%; = 0.267 spacing, 10-bladed
case is apparently high and is probably traceable to the
arguments already brought forth with respect to M(r) and
N(r). Although the predicted 5-bladed case is close to
the measured value, the 2-bladed prediction is too low.

The theoretical trend of the variation of force coefficient
with blade number therefore has a greater slope than the
experimental one.

There is a rapid decay of the predicted perturbations
with distance away from the discs, as shown by the fact
that no measurable values were computed at distances nine
inches away. This is contrary to the exparimental findings
which show that the perturbations do exist at distances

-

" such as that.

Conclusions

In the light of the discussion of results the following
conclusions can be made:
1. The experimental results give a very good picture

of the force cancellation by a propeller.
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2. The theoretical method that was developed
appears to be a useable one.

3. The theory is being extended to its limits when
being applied to a case with a strong vortex
present.,

4. The theoretical approach can probably be
extended easily to the case of a ducted
rotating device.

5. The agreement of theory with experiment is
sufficiently good to warrant further studies
concerned chiefly with improving the accuracy

of predictions.

Suggestions for Further Research

The following suggesticns are made with regard to

future work in this general area.

1, Work with existing test setup should be
extended to the cases of propellers with
different diameters than the control surfaces.
This very practical type study can be done
simply by cutting down the tips of the
existing blades.

2. Ways to improve the computing accuracy of a

study such as this should be undertaken.



3.

An extension of the theory to the case of
control surfaces and propellers immersed in
the boundary layer of a body should be
pursued.

An extension of this theoretical approach

to pumps and compressors should be tried.

57
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APPENDIX A

DERIVATION OF PRESSURE EQUATION

The equations of motion in cylindrical coordinates are:

W LV, VL M S 3P
Vr 3F t# Y2 +V, 3z 4 = _“£'iﬂ:
MWV .V, 3V 2V VY, IP
Vi Y dp + Vs 5z + rrq “'?L‘rlT"a‘q'o (A-1)
23V, LV, Ve Ve - —L 2P
Vr-g-r-#-—,é'——a';,;' T V253 7 3z
Likewise in cylindrical coordinates, the continuity
equation can be written as
V, 2V,
—,ﬁ- %7("\/,«) + = 33(; + 5% =0 (A-2)
The following are assumed
V, = ~n(rez)
(A-3)

V, = Vulr) + 5 (rg2)
P = ﬁ'('”ﬁ”;z)



where the disturbance velocities, vr, AT and . and
the disturbance pressure p are very small compared to
the primary velocity Vz - vzm. When used in

Equations (A-1) the following set of 11n§ar differential

equations result:

\/ZTzz —‘,3-3%' (A-4)

= g Ll
Ve S‘Zi = rr 3¢ (A-5)
dV) 7 % _ L A
= (Tr‘z + \/z Sz P oz (4-6)
The continuity equation also becomes:
403 I 3V d Uz
r 3r (r/v':> T S@ * azz =0 (4-7)

s
Solving for %——55- in Equation (A-7) and substituting

in Equation (A-6):
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Differentiating Equation (A-8) with respect to z yields:

pdle _ Ve lap 307 |, Rag 22
r 2-_5[ Lyrir =- -—ﬁﬁ -9
0Z dr r 22 aroz i 3¢y 92 (4-9)
Differentiating Equation (A-4) with respect to r and
Equation (A-5) with respect to 99 and substituting the
results and Equation (A-4) in Equation (A-9) produces,

after proper grouping of terms:

2
zg-(—-g 2 -’-,.L_a.z“_' —LE—-%+§-&-=O (A-10)

A1 ‘@ °Z*



APPENDIX B
DERIVATION OF VELOCITY PERTURBATION EQUATIONS

The equations for pressure perturbation can be written,

a8 in Equation (2), for each of the three regions:

’

P=S5 4y, 2, lkr) T 7Y

=33 4 2 (r)e ety 550 7 NPT g,
Ko Z

#4255 duy Zollon) €7

These expressions for p can be substituted in the
linearized squations of motion and, upon integration,
equations for the velocity perturbations in each region

can be derived:

Region (1)
= =35 Auy Z, (k1) S E e £ 00
2 mn
:\% =-22 %FAMZM(M")C " +g,ffm) (B-2)
V2

kmnZ _ .
- "é ; Amn Zm (K’,,,,,f) < zc " '*‘A, re
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Region (2)
B 2 =33 BunZ, (k) €% 7

\/Z / -kﬂmz "m¢ f
+22 Gy Zulhar)e " ET 1 1, 050)

A, Lm bomm ‘my
Lm mnZ g, (myg (B-3)
+2;7 Con Zntlan?)€™" €5 22059
V2 __35 8, Z (har) e
* ~Z5 Cuy 2, o) €T ETTH hy(h9)
m
Region (3)

’

:;:;3_ =22 Dm” Z,(km;r) e—kmnzc/hﬂp+ fs(,;%)
z "~ "

' ~fopy Z_ L1
y .5 -A‘:L"’-F D, Zonlba?) C A g3 (79) (B-4)
Vz m n mn



The definition for z;(x-nr), where it occurs, is:

G(JZ;q(k%»Cl
d(kny )

/
Z, (k1) = (B-5)
The functions, £ (7, ¢)) g(rp), and h(r,@) are a result
of the integrations. The evaluation of these functions is
dependent upon the physical problem and is discussed in
another section.

The coefficient, Aln’ used in these equations is

defined as:

L n
— e, 6
/4n1n - — 2 (B-6)

P Ve

The coefficients, Bm C n’ and Dmn’ are defined in the

n’ “m

same manner with respect to bmn’ c_., and dnn

respectively.



APPENDIX C

DERIVATION OF RELATION BETWEEN TANGENTIAL AND
AXIAL VELOCITY PERTURBATIONS AT DISC B

Referring to Fig. 3, a relation similar to Equation

(23) can be written:

We 1. C8 V.

/
= c-1)
\‘/‘z 4K 21rr Ty, < ¢

where the primes indicate conditions with a distortion

present. Let it be assumed that the chord of the section
)

is set at the angle 5. C, is then given by:

/

C, =G, + a, (6-¥) (c-2)

where C1 is again the 1lift coefficient at zero angle of
o
attack and a, is the slope of the section 1lift curve.

The angle & is given by:

1| L+ by (1)

6= tan (c-3)
nr
TE ~ 4 gy(r)

and the angle (/ is given by:
Xz,

Y = fan_/ [ T _Ta (c-4)
2, Y !
J &



To be consistent with the linearized aspects of
the problem these expressions for angle must also be
linearized. Consider first the angle, & . This can be

represented by:
-/
6 = lan 4 (c-5)

A reasonable range of ? would be from 0.3 to
3.0. Therefore, y would have a corresponding range of
approximately 3.0 —> 0.3. Because it could be reasonably
expected that values of y would be both greater than and
less than 1.0 it would be necessary to consider two series

for . For y2< 1:

/

Tan r

For y2 21

5_ '

3
IY - @

N

Z'an'ly

The results of linearizing either of these expressions
is the same s0 only details of working with Equation (C-6)
will be discussed.



Let the following substitutions be made for ease
of handling:

.=
A=
a = hy (r) (c-8)
4= =% Gy (1)

Therefore:

(C-9)

Substituting these approximations back into Equation (C-6):
-/ - — / _,_l_ -y L— - iy
Lan ?-(7" J3 T Jrald-hrie)

- 4
A (Fdrd ) (c-10)

or

-/ -
Zan ¥ = lan (’,4_)"‘(”' %)[*-7/1"’2’?'_] (c-11)
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Taking now the ser:l.es[-i— —Zﬁg + :4—3— _7 let xf— =Y .

The series can then be put in the following succeeding

forms:
I = y—0rirr’-
L_,=-0 et
.4
.‘I_:Y—z— —XJ-FY{ e
Y X[Y -] (C-12)
-y = -¥v° 1
- X - A
I = S
Finally:

rx
7:2%2)'1 (c-13)

o Z‘arf’(_f}é’é_) +[A_,(f)+ '('15/_27 48 (ry.
J

Using the same type of derivation the expression for y
will be:

I [ L (M= rx
=L __.>_,_[____i__ C — , J _
e bGP [Ty ] Ty e
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and from these':

(6-vw) = (ZF)

/()

L Co(r)y Vg !
(A_g(ﬂ‘wz')-r- (60 2-%)
Vz Irx

v (c-15)
From the velocity diagram in Fig. 3 the following

1]
expression for Ve is derived:

L
/
Ye . (/-f- ._‘Ee.>+(2'-f+ Yy - Y2 )72 (C-16)
7 J e VZ
To linearize Equation (C-16) let:
::Ei = &
Vz
X
_JZ_ A (C-17)

80 that

»/’ 2 2/ £ \2 '%
_\,7£_=[(/+a)+/4(/*2‘)] (c-18)
P4
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Dropping higher order terms within the brackets:
/ PIRE:
Ve _ 2 __.)
—\_}——[ /! + aa + A (/1’2 A (C-19)
p

which can be rewritten:

/ 4
_‘_/\_/3_=[(/+A2)+ z(a,-:-/@/\)]a (c-20)
2

Using the binomial expansion and dropping higher order

terms:

’ L 2 -é
Ve (144 e L1+ A7) T [2(arlA)] oy

Z

When Equations (C-17) are substituted and terms

L
rearranged the final linearized equation for Ve is:

e . [ /+(—7fF)T><
Vz

/ v; o
I [ A=V
[1+( 1'7’3)7 v WA (c-22)

If substitutions are now made in Equation (C-2) and
then in Equation (C-1), the following equation results

after further dropping of higher order terms:
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&t ecr] Sk

- ), (505

(I—>

J
(c-23) .

The change in the tangential component of velocity

/
across Disc B is represented by 2 /CW; . One can there-

fore write:

Muy
Ve Ve

S

w—/
2 — 2k £ (C-24)
V2

When Equation (C-23) is substituted in Equation (C-24)

Va is given in the following form:
3

/VI,J

(c-25)

e
_ M(r) 22
= K(r) +Mi(r) =

2 2z

<
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where:

rs_z-é'zgrﬁ)[’*%"‘)z | )T se0
K(r) =, C_;'_‘FY] [ (N)z][ha (#)} (Cc-26)

/ + 2, (4& / +.(

[/ +(—Z)]

e 2l BT [ ) ] s

3
Nir)= 1 2a,(+ 2> 1+(2%) / (c-28)
M= /m -
[+ % (FR e . | + (L)

It will be observed that when the propeller is a
nonthrusting propeller the value of K(r) is zero. M(r)
and N(r) will have values regardless of the propeller

design. If one goes through the detailed substitutions,
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it will be observed that when no distortion is present,

Equation (C-25) reduces to:

3 = ~2k “r (C-29)
Ve Ve

This is a check on the correctness of the relation.



APPENDIX D
SOLUTION OF UNKNOWN COEFFICIENT, cmn

As stated previously the propeller need be considered
only as a non-thrusting propeller. Equation (44) can then

be written as:

A, S )

2 = M(r) 22 4 N(r) 4= (D-1)
with the g3(r) and that part of hz(r,gﬁ) equivalent to
h3(r) dropped from the expressions for v and v_ .

U3 Z2

Substituting from Equations (B-3) and (B-4) into

Equation (D-1):
l:M n ‘k'"”d L;’?&
225t nlhar)e ™ C
k,. d 4?n¢9
22, (har)c ™

~fwnd_ L '
FZZ Oy 2y lhIE € 250,,2, 0,0

man Mhm
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For a single wave in r and @the following would then be

true:

.££1 D <:—A3”d

k”m r mh

= —M()') CA:M M()c-,ﬁm mn

o o
FMUP) 0,,,,, - Nr) ,;: -

/r»md .‘
+N (r ) ,. Cm ” (D-3)
04n
It is probably most convenient to substitute into this

equation so that it is put in terms of one unknown, C.n.
Equation (21) can be used for Bnn’ Equation (31) for

Dnn’ and Equation (34) for Ohn‘ When these substitutions

are made, the following equation results:

_£_”_7__ e‘knmd(/ -2 Cz mnd_f_ c‘)“'ﬁnnd)c -, Lin (myciknmd

k»m r dl bwn

JO p
I el
mn

»m "'47»/1
_ M(r) &L e B - Mine G, ,
+2 M(r) ckm"dcm”+—,é,—M(r)/° -M/r)ck””dA

' 3
- e e ),,m (L™,

—A»wv¢

LM
+N(r) oy Cm

(D-4)
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By combining terms and defining the following:

s=(/-2 e, e #himn®) @Horn
(D-5)
- (=) "

Equation (D-4) can be altered to read:

{[M(r §]+i[4£ S + M) s }C,,,,,
2Kynd
:[7!‘_7%,‘*’ /\/'{r)l ckmn )':n_/w(’)ckm%”"g

(D-6)

- [ LR, k1 &,

m 7

. Functions of r must be eliminated in Equation (D-6)
so that cnn will be independent of r. To do this the

following are assumed:

Mr)=Z 5, Z (k1)
/\/(rf‘) _ % Y, b4 (/74”) (D-7)

7£' = % ’\/,e Z/(*’lr)
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in which case:

)

o = — ——rs / rMr) (k,nar
7¢ _go_ [Zz (A;!Cj-# LZ—%‘%-G—[ZI(QG‘)?Z
Yo = — / WZ (el
AL ”]+——%[za,e ; o
%
)‘/Z. = / 72 3 Z/(k,,el")d/"

5 [z 0]+ S 7.5 4

The Eigenvalues could be the same as those calculated for
the first order when finding the Pmn and A;n coefficients.
Substituting Equations (D-7) into Equation (D-6)

and replacing An by A;n as defined by Equation (46),

leads to:

{[sz <]+ i[sZA+ TEu]Z) e
Z*Mn y
=[( Shet S— S 0h i3 A"J

. v / /
"‘[71'% . /?,,,7 = ; °§_¢ A»m] (D-9)




Consider Equation (D-9) of the form:

(A+¢B) G, = C —¢0

Cmn can then be written:

where:

and

80

(D-10)

(D-11)

(D-12)

(D-13)



APPENDIX E

COMPUTATIONAL PROCEDURES

Bessel Function Subroutine

To effectively program the theoretical calculations
on the computer, a Bessel function subroutine was necessary.
Because the range of arguments was so large this sub-
routine would have to switch from the regular expansions
to the asymptotic expansions at some prescribed argument.
Finally the subroutine would have to be able to compute
the Bessel functions for any order.

The regular expansions for Bessel functions of both
kinds are given as:

J”q (x) ==£§Z (c_>5 (é'>¢>

S/ (m+s)/ (E-1)

m+ras

and
o’ Y, (%)= Z{b’-f—/n (-é%)} Ip, ()
¢ = m+25
- Z -ﬁ—-—l-(’”s/

S=0
425
o2 s (4x)

~Z )it )/(’*‘*"‘*’f

S=0
"""‘"4‘*”‘*&1?5 (E-2)
where Yy = 0.577216.



82

These expansions were programmed to include terms up
to the point where the absolute value of additional terms
was less than 0.000001. With this accuracy it was
determined that these expansions were useable up to an
argument of 7.0. Beyond that point asymptotic expansions

were adequate. The asymptotic expansions are given as:

d, () =V2/rx //fn (%) css E,, = G (%) sin gm} (E-3)

Y, ()= 12 /m% | Guf#) 05 &, T /z(")s’”i} (E-4)

where:
E = x-4(m+i)r (E-5)
L ems) () g) (MR8 X)L
S )=/~ e ¢/ () e
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(pm=1) _ (M=r)(m=9) -5 5
Qm (%)~ g x 3/ (&=)3 gy (E-7)

= 4 m" (E-8)

The specific procedure followed was to compute the
Bessel functions of beth kinds by the expansion commen-
surate with the argument for orders of 0 and 1. The
following recurrence formulae were then used to successively

increase the order of the Bessel functions to the one

desired:
ppg, (%) = (29752 ) S (%) =, (%) (5-9)
N (%)= (2mse) Vp (R)= ¥, , (%) (E-10)
Integrations

All integrations in the computational procedure were
performed on the basis of the trapezoidal rule. In other

words for a definite integral of the type:
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%n
4 ~ dx (E-11)

[4

the integration was interpreted geometrically as an area.

The area was taken as the sum of n trapezoids so that:

%, %, «<
/o ydx={xydx +x//?,d%f--~"+4 n?.a/x (E-12)

x et

or

75,7
40 ?«dx= fg—’-(?-, +2%+2%+,.,+2%_/+%) (E-13)

Equation (E-13) implies a constant 4ZX or a series of
trapezoids of equal height. All integrations that were
performed were for constant 4x values that were sufficiently

small to insure an accurate summation.

Other Computations

The rest of the computations that were performed were
of a straightforward nature. The only deviations that
arose were with large exponential values. This aspect of

the computations is discussed separately in Appendix F.



APPENDIX F
REDUCTION OF cmn EQUATION

For reasons of handling ease the following definitions

are made:
L = F %
y = 3 Y (P-1)
)\ = %- )‘/,c

In Equation (D-12) and AC and BD terms in the numerator

can be written as follows:

SHhK 2k, d S)ec
=2AZ 5t I
Kenn e Knn 7"

AC =

k'nn n kmﬂ (F-2)
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A number of like terms cancel when BD is subtracted from

AC and upon substituting for S, T, and U from Equations (D-5):

2 —A’m d —Bk
Gl hmd_2 ™% = )1

AC-8BD = - by M4
2k d, K, =3 K,,.d
= 2 mn (ckn{_e ” )12%/
A; e
/]
(r-4)
kand

The C term outside the parentheses will cancel with

a similar term in the denominator of Equation.(D-lz) 80
that at the higher kmnd valueg the level of the AC - BD term
is governed very much by ekmn and not by the extremely
high values resulting from S, T, and U.

In the case of Equation (D-13) AD + BC does not
provide any fortunate term cancellation. However, when
considering higher values of knnd’ certain terms become
so large compared to others that they can be considered
alone,

The AD and BC terms can be expanded to the following

form:

Ap= cskmnd(_."%‘t)@n _ cakmd(%_:)(zem +A:M) #-5)

_ o Skmnd,rm 2 k,
Be= € B )R 2xr ey - "'"d(-‘%’@” 2N +3)0Y)

k /
-_ 3 Korn d(A_:_;}n A»m)()\z'/'A a’) -6)
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In both Equation (F-5) and Equation (F-6) terms multiplied

34,
by exponentials smaller than Cc mn A were dropped. 1In

fact when knnd is large enough, terms multiplied by

34
c md will have no significance compared to terms
Shkwnd
multiplied by C . AD + BC could then finally be
written as:
Sk, d 2 2
AD"‘BC'-‘C mn Fﬂ;'tz[ocz‘*‘ mz (A'f'a’)] (F-7)
I7Z] £ .

A similar reduction of terms can be performed for the

denominator so that

2
A2+ R% = c”’"”"[oca + 7”-}- (A +-é')a] (F-8)

This leads finally to the expression:

hyd P
F = & ” :;7 (F-9)

bunl

when (* is sufficiently large.
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i I L
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RADIUS, r = INCHES

Fig. 38 Radial Distribution of M(r)
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Fig. 39 Radial Distribution of N(r)
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